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Abskact. The spin probability distribution at equilibrium in a multicomponent mean-field 
model of a ferromagnetic slab made of N rows is considered. Everywhere, but at the critical 
point, the spin fluctuations converge, as the number of spins per TOW tends to m, to 
Gaussians with covariance equal to the thermodynamic susceptibility matrix. At criticality, 
abnormal coherent fluctuations along the positive eigenvector of the interaction matrix are 
found, whose limit distribution is an erp(-x') law. 

1. Introduction 

An important problem in equilibrium statistical mechanics is to determine how macro- 
scopic observables are distributed around their mean values. This is especially interesting 
when the equilibrium state is non-homogeneous, e.g. due to a free surface, in which 
case a local study is necessary. Unfortunately, the control of non-trivial (interacting) 
systems is quite difficult, in that it requires limit theorems for sums of (strongly) depen- 
dent random variables, and rigorous results in this area are scarce. Notable exceptions 
are mean-field type models. The Curie-Weiss model of a homogeneous ferromagnet 
has been studied by Ellis and Newmam (1978a, b) using large-deviation techniques. The 
same method worked for a similar model, which had large-scale non-homogeneities: 
the circle model (Ellis and Rosen 1982). The monograph by Ellis (1985) contains a fair 
description of the subject. 

In this paper we consider the spin probability distribution in a mean-field-type model 
with sharp non-homogeneities: the ferromagnetic slab. The model is defined as follows. 

Consider a rectangular array of N rows, labelled by i= 1 , .  . . , N ,  and M columns, 
p = 1, . . . , M, of 'spins' S, , i.e. real random variables, a priori independent and ident- 
ically distributed (i.i.d.) with an even probability measure concentrated on [-I, I]. The 
interaction energy is taken as ~ ~ 

(1.1) 
N N 

HM,N(sM)= -- 1 J j J S y S y - M  h&' 

where SM= {Sy} i=I , . , . ,N~RN is the vector of average row magnetizations 

2 i j -1  , - I  

M 

Sy=M-l Sjp i = l . .  . ., N .  
11-1 
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The couplings Jii and external fields hi are assumed to satisfy 
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Ji+0 hi>O Vi,j=l,.  . . , N J =  (J,J)  > 0 (1.3) 
i.e. J is strictly positive-definite). Moreover, the apriori measure p is assumed to be a 
'OHS measure' (Ellis and Newman 1978c), i.e. its moment generating function 

F(t):=log e"dp(x) (1.4) J 
has strictly concave derivative on [0, CO). 

SM in the equilibrium state at inverse temperature p, 
We are interested here in the (joint) probability distribution of the random vector 

dp%(S') =Z-' e x p [ - P ~ ~ . ~ ( S " ) l d p ~ ( S " )  (1.5) 

in the asymptotic regime M-% (mean-field limit); in equation (1.5) p$= 
p M N o  (SM)-' is the distribution of SM in the non-interacting case (i.e. under the product 
measure p M N ) ,  and Z is the normalizing factor (partition function). 

The thermodynamics of the model and of its N-tco limit have been studied in detail 
by Angelescu et ai (1972a, b, 1981); it is, as expected, a non-homogeneous mean-field 
model, i.e. the expectations of SM in the Gibbs measure (1.5) converge as M+co to 
the solution meRN of a system of self-consistency equations, and m is correctly related 
to the derivatives of the free energy: 

f= lim -(pM)-'logZ. (1.6) 

Assumption (1.4) ensures a normal ferromagnetic behaviour: the phase diagram con- 
sists of a first-order transition line h=O, p >p r ,  terminating at a Curie point. 

Physically, there are two different situations which can be described with the 
Hamiltonian (1.1): (i) a ferromagnetic thin film, where M is large, but N is kept fixed 
at a finite value; (ii) a semi-infinite ferromagnet, where both M and N are large, but 
consideration is restricted to rows near the surface, i<<N. (We have chosen here to view 
the M spins in a row as part of a 'two-dimensional layer', therefore to view equation 
(1.1) as a model of a three-dimensional sample; of course, this is purely conventional, 
because equation (1.1) is invariant under permutations within each row.) 

Here we shall concern ourselves only with case (i). We show that, under assumptions 
(1.3) and (l.4), the random vectors SM converge in distribution to a Dirac measure 
concentrated at the thermodynamic magnetization vector ni, and the fluctuations 

M-CO 

y M , ~ l t 2 ( ~ M -  J4 1.7) 
also converge in distribution (after a suitable conditioning in the two-phase region). 
The limit distribution of YM is a Gaussian on W N  with covariance equal to the suscept- 
ibility matrix ,y =a&h everywhere, but at the critical point h =0, p = pr ,  where abnor- 
mal fluctuations along the positive eigenvector of J are found, M-'"YM converge in 
distribution to an exp(-x4) law along that direction. The result and the method are 
generalizations to N dimensions of those in Ellis and Newman (1978a, b). The same 
approach applies to other apriori measures; however, the limit distributions will depend 
on p ,  more precisely on the nature of the different transition points on the phase 
diagram. 

In the semi-infinite case (ii), one has to study the l a r g e 4  asymptotic distribution 
of the infinite sequence h, iE N. But in this case it is well known that the behaviour 



Magnetization fluctuations in a ferromagnet 1465 

is different even at the level of thermodynamics, e.g. the critical index of ml equals 1 
in the limit N-m, in contradistinction to its value of $ for finite N (Angelescu et nl 
(1981, 1987); for previous results, mainly in the continuum approximation, see refer- 
ences in Binder (1983)). Under these circumstances the asymptotic control of the 
sequence of Markov chains {Si", i e N )  is far from trivial and the corresponding analysis 
will be published elsewhere. 

2. The large deviations of 

In the non-interacting case, i.e. under p k ,  the law of large numbers ensures that SM-0 
in distribution. 

Let F* be the Legendre transform of F (equation (1.4)) : 

P ( x )  =sup ( t x - F  ( t ) ) .  
,ER 

By the classical Cramh theorem (Deuschel and Stroock 1988, theorem 2.1.6), &obeys 
the large-deviation principle with the rate function 

N 

Io($ = c F * ( X i )  
i- I 

N x= (xi)i= I ,  .... N E R  

i.e. for every Bore1 subset A c RN: 

- inf Io@) Qlim inf M-'  log &,(A) Sl im sup M-' log &(A) Q -in< Io@).  (2.3) 
XEI"1R M-CO hi-m XEA 

This means that, if A is far from the origin of RN, the probability of SM E A  is exponen- 
tially small. 

In the interacting case, by the transfer principle of the large-deviation theory 
(Deuschel and Stroock 1988, theorem 2.1.10 and exercise 2.1.24), pf, satisfies the large- 
deviation principle too, with the rate function 

(2.4) P I&) = -+ Jx) -m 4 +I&) -Pf 
where 

.I - f3f= sup[ B p, Jx) + j3(x, k) -Io (x) 

Notation (2.5) is legitimate: by taking A =  RN in the analogue of expression (2.3) 
for Z&,, one obtains the existence of the thermodynamic limit of the free energy, 
equation ( I d ) ,  withfgiven by equation (2.5). 

By the analysis in Angelescn et af  (1972a), under assumptions (1.3) and (1.4), 
inf Ip=O is attained, for hfO or PQPp, at a unique point meRN, while for h = O  
and p > P r  it is attained at two points +meRN.  Here /3: is the largest /3 for which 
I :  (0) - p J >  0, i.e. 

p:a,,,.,(J) =F*"(o)= I/F"(o) (2.6) 

mi=F'(P(Jm+h)i) i= I , .  . . , N .  (2.7) 

and, in all cases, m is the unique positive solulion of the system: 
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As a consequence, we have the following proposition. 

Proposition I .  Under assumptions (1.3) and (1.4), the distributions gf, of Sh’converge 
weaklyas M-CO io6,“,ifh#OorPSp,N,and to ~(6,.+6-,.),ifh=Oandp>p,N. 
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3. The central limit theorem in the non-critical case 

Once the convergence in distribution  of SM to the magnetizations tn predicted by the 
mean-field theory has been established in proposition 1, one can ask about the distribu- 
tions of their (suitably scaled) deviations Y M  defined in equation (1.7). In this section 
we consider the non-critical case, for which we prove a central limit theorem. 

Non-criticality is defined in terms of the behaviour of Zp(x) around its minimum at 
m as strict positive-definiteness of its second differential: Lmin(I;(m)) > 0, where 

Ip(x) = 4(x- m, I @ ) ( x  -m)) + o( IIx- mll2) (3.1) 

I;(nI)=I;(nl)-pJ (3.2) 

The minimum is non-critical for all (8, h) #(p f ,  0) (Angelescu et a1 1972a). Indeed, if 
m=O. thenh=OandP<pr,  hence Ip(O)=F*”(O)I-PJ>O, by definition ofpT;other- 
wise, defining Ti j=  6,F*’(mi)/mj, one has I;(in)>r-pJ by assumption (1.4), and 
r-pJ>O, because it has non-positive off-diagonal entries and ( T - p J ) m = h  with 
m i l o ,  hj>O, by the self-consistency equation (2.7). 

One has to distinguish between the cases of uniqueness and non-uniqueness of the 
mean-field prediction. In the latter case, which arises for p>p:’, h=O, one can expect 
convergence in distribution of YM only after conditioning SM to stay far from one of 
the two solutions. We therefore define 

with 

~ ~ ( m ) ~ = ~ * ” ( m ~ ) & =  6 g / p ( p ( J i n  +/I):) i , j = l ,  ... , N .  (3.3) 

v&(.)=p&(. ISM6A) o (YM)-’ (3.4) 
the distribution of Y M  in the conditional pf,  measure, where A is an open set containing 
m, such that A contains no other minimum point of Ip(x). 

Proposition 2. Under assumptions (1.3) and (1.4), and if ( p ,  h)#(pr ,  0), vf,converges 
weakly to the Gaussian measure of mean 0 and covariance x =I$(m)-’.  

Proox Let us first remark that, by the large-deviation principle for &, the conditioning 
set A in equation (3.4) can be replaced by a ball {llx-nn1[<6) of arbitrarily small 
radius 6. Denote by xM(y )  the characteristic function of { llyll <M’’26} .  

Next, we change to another free measure &, defined by 

Clearly, &, is a product probability measure on RN and jxd&(x)=nn. If 
i.”,&, o ( YM)-’ is the distribution of YM in the new measure, we know by the 
classical central limit theorem that i.; converges weakly to the Gaussian measure of 
mean 0 and covariance I;(ni)-’. 
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A straightforward calculation shows that, for every bounded continuous function 
f: RN+R, 

(3.6) 

Hence, the proof will be complete if we show that the functions 
x&) exp[fp(y, Jy)] are uniformly integrable. This will follow in turn from the bound- 
edness of the sequence 

for some PI > p .  To see this, it is sufhcient to,choose pI > p ,  a < I and 620 in sucb a 
way that ( U )  afi(m)-b,J>O and (b )  the sequence J x M ( y )  exp[fa(y,I;(m)y)] 
dO%(y) is bounded. (The latter is the uniform integrability bound 'in one dimension', 
e.g., see Ellis 1985.) 

4. The abnormal fluctuations at the critical point 

The critical point has been defined by dmin(I$(m))=O. As already discussed, this 
happens only for (p ,h)=(pF,O).  Thereby, m = O  and hence the eigenvector of 
I;(m)=I$:(O) corresponding to the zero eigenvalue is the positive eigenvector of J, 
which we denote e :  

Let P= (e, .)e be the one-dimensional orthogonal projection onto e, PL=I- P, and 
decompose : 

Y'= M1I4ZMe+ p' YM (4.2) 

i.e. the random variable Z M  is the rescaled fluctuation along e. 

Pvoposition 3. With the above notation at ( p ,  h)  = (p:, 0) and under assumptions (1.3) 
and (1.4) supplemented with 

F (4y0) < 0 (4.3) 

the random vector (Z", PLY") converges in the j& distribution as M+co to (Z, Y'), 
where Z and Yl are independent; the distribution of 2 has density 

(4.4) 

whileYLeP'RN is Gaussian of mean zero and covariance x' equal to the inverse of 
the restriction of I!(O) to P'RN. 
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Proof: We shall prove the convergence as M + m  of the moment-generating function 
of (ZM, PYM), ghf: RxPJ-RN+R: 

N 
+ M I  F([PJ(M-I/ 'Pf+ M -lQP'f)]i) 

1-1 
(4.7) 

The convergence of hM will follow from the dominated convergence theorem. Point- 
wise convergence of the integrand in equation (4.7) is immediate from the Taylor 
expansion of F up to fourth order: for fixed tsRN, the only terms inside the braces 
which survive for M+m are 

N 

(4.8) 
I - I (P  f, PJP't) + fF"(0) 11 P J P t  112 + hF ( y o )  (PJPf)! .  

i- I  

So, were we allowed to take limM,,under the integral sign, the assertions in proposition 
3 would follow by performing the Gaussian integration over P'f and combining the 
result with the exponential in front of equation (4.7); to recognize the density (4.4) in 
the remaining integral over z = ( P f ,  e) use is made of equation (4.1). 

In order to obtain an integrable bound, we use the following consequence of assump- 
tion (1.4) and of supppc[-I, I]: for &>O sufficiently small, there exists T>O such 
that 

F(f)<tF"(O)f2-- Et' i f l t l<T (4.9) 

F (1 )  < f (F"(0)- &)f2  " if1 1 12 T. (4.10) 

Indeed, inequality (4.9) is true, because F"'(O)<O and F(t ) -~F"(0) t z<O for ffO 
by equation (1.4); on the other hand, expression (4.10) holds for T sufficiently large, 
because F ( t ) < l t l .  

Splitting the integration domain into 

S T , M = { ~ E R ~ :  IIPJ(M-"4Pf+M-'QPLtll < T }  

and its complement S;.,,,, using the equivalence of different norms on RN and the 
orthogonality of Pt  and P't, one can bound the exponent in equation (4.7) by 
-S(IIPfl14+ IIPLtllZ) on ST.M, and by -S(M'QllPt112)+ IIP'tl12) on S%.M, for some 
6>0. The integral over S?,M converges to zero, and the bound on ST.M~S uniform in 
M. This completes the proof. 
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The physical picture that emerges from proposition 3 is that, at the critical point, 
the row magnetizations experience simultaneously giant fluctuations, the amplitudes of 
which are proportional to the components of the spontaneous magnetization vector at 
nearly p>pF. Indeed, they are proportional to e;, and for p\pc the linearized form 
of equation (2.7) shows that m/l[mll-+e. The fluctuations of Y" from the direction of 
e (i.e. of Y"/IIY"ll - e )  are of the order of M-"4, i.e. negligible for large M .  
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